Identification of genes expressed in primate primordial oocytes.
نویسندگان
چکیده
BACKGROUND The factors involved in oocyte survival and transition from quiescence to the growing phenotype remain unknown. Herein we report genes that are differentially expressed in the primordial oocyte revealed by DNA arrays. METHODS Primordial oocytes were captured selectively in rhesus monkey ovary sections using laser capture microdissection. The RNA was extracted and amplified in two rounds by T7-based linear RNA amplification, fluorescence labelled and then hybridized to human cDNA arrays containing 7680 elements. RNA from human placenta served as a reference sample. RESULTS Ninety-five genes were found to be consistently expressed at a higher level in primordial oocytes. Expression of several of these genes in the oocyte has been reported before, e.g. deleted in azoospermia (DAZ), prohibitin and transglutaminase 2. Oocyte expression of several novel transcripts revealed on array hybridization, such as gene 33, ubiquitin-conjugating enzyme E2A, G1 to S phase transition 1, growth arrest and DNA damage-inducible (GADD), and dendritic cell-derived ubiquitin-like protein (DC-UbP) was confirmed by in situ hybridization. Some array-identified gene products [integrin beta3, alpha-tubulin, regulatory telomere elongation protein (RAP1) and cellular repressor of EIA-stimulated genes (CREG protein)] were detected in human oocytes by immunofluorescence. Bioinformatic analysis of the oocyte-enriched transcripts reveals a functional profile summarized as follows: cell cycle (14%); transporter (13%); signal transduction (10%); cytoskeletal (7%); transcription factor (5%); immune response (5%); apoptosis-related (5%); RNA processing (5%); and the remainder of miscellaneous categories. CONCLUSIONS These observations may contribute to the elucidation of molecular pathways involved in oocyte survival and maturation.
منابع مشابه
CLONING AND EXPRESSION OF LEISHMANOLYSIN GENE FROM LEISHMANIA MAJOR IN PRIMATE CELL LINES
Leishmanolysin is a worldwide disease that is caused by different species of the genus Leishmania. Leishmanolysin, One of the genes expressed by Leishmania, appears to be an ideal candidate for genetic vaccination. In this study, a full length sequence, which encodes Leishmanolysin functionally critical regions (amino acids 100-579), was cloned from a Leishmania strain endemic to Iran. Analysis...
متن کاملP-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملMolecular markers of oocyte and primordial germ cell development in the sea urchin
Beginning over 150 years ago, sea urchins have been an essential experimental tool for our understanding of fertilization and early development. Here we summarize our recent progress on the molecular mechanisms of oocyte development and fertilization in the sea urchin resulting from completing the sequence of the purple sea urchin genome. This genomic information has enabled us to predict gene ...
متن کاملInteractions between progesterone and tumor necrosis factor-alpha in the regulation of primordial follicle assembly.
Follicle assembly is the process by which groups or "nests" of oocytes break down to form primordial follicles. The size of the primordial follicle pool is the major determinant of the reproductive lifespan of a female. Previously, progesterone (P(4)) has been shown to inhibit follicle assembly, while tumor necrosis factor-alpha (TNFalpha) has been shown to promote the apoptosis that is necessa...
متن کاملInteractions between progesterone and tumor necrosis factor-a in the regulation of primordial follicle assembly
Follicle assembly is the process by which groups or ‘nests’ of oocytes break down to form primordial follicles. The size of the primordial follicle pool is the major determinant of the reproductive lifespan of a female. Previously, progesterone (P4) has been shown to inhibit follicle assembly, while tumor necrosis factor-a (TNFa) has been shown to promote the apoptosis that is necessary for fol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human reproduction
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2005